NITROGEN MANAGEMENT

2013 YWTG

Outline

Background

University Data

ACSC field trials

Summary

NITROGEN MANAGEMENT

- Current N recommendation
 - 4' sample rec= 130 lb. soil N + applied
 - 2' sample rec= 100 lb. soil N + applied
 - Minimum of 65 lb. needed in top 2'
- 2012 ACSC soil test encoded acres
 - 131,000 acres received (31%)
 - 80% of these acres avg. 136 lbs. total N
- Growers following recommendation closely

NITROGEN MANAGEMENT

- Is a 20 ton yield potential realistic anymore?
 - Nope
 - -2012 crop = 27.1 T/A
 - Nitrogen use efficiency
- Are their times we need to supplement more
 N for the crop? Side dressing?
 - U of M Crookston (Smith & Sims data)

RSA by TOTAL N

Why Side Dress then???

- Climatic conditions
 - wet/dry
 - cool/warm
- N efficiency
 - mineralization (OM%)
 - nitrification (warm, moist soils)
 - denitrification (water logged) (80+ lb./A losses can occur)
- Other crops
 - residue, previous crop credits
- Environmental concerns
 - leaching, runoff

University- Sims 2012

- Determine if N placement and timing can improve availability and utilization in sugar beet production on finer textured soils in the RRV.
- Compare traditional broadcast methods to broadcast + side dress
- 2 sites North of Alvarado, NWROC
- Band application was at the 10-12 leaf stage
- Residual N was 65 lb./A

Yield, University – Sims 2012

Quality, University – Sims 2012

Summary – Sims 2012

- Side dress N had little effect on root yield.
- Side dress N had less negative effect on root quality than broadcast
 - Later applied side dress N did not seem to reduce quality.
- One year of data

Objectives- Smith, Cymbaluk

- To Determine the best method of Correcting an in-season nitrogen deficiency.
- Does timing Nitrogen matter.
- What rate of Nitrogen should be applied

Trial- Smith, Cymbaluk

- Trial was conducted at the NWROC in Crookston, Wheatville loam
- Residual Nitrogen was 50 lb N per acre
- ➤ Nitrogen treatments were fall applied with Urea at 30, 60, 90, 120, 150, and 180 lb. N/acre on October 21, 2010
- 28-0-0, UAN fertilizer was used for the in-season treatments at 30 and 60 lb N/acre at two different times: T1 June 8 (6 leaf),
 T2 July 6 (row closer)

Fall Applied Nitrogen

University of Minnesota (Smith, Cymbaluk)

Gross Revenue (\$/A)

Total Ib Nitrogen Per Acre

Yield and Sucrose Effects with 140 lb N per acre applied at different times

2011 University Of Minnesota (Smith, Cymbaluk)

A	pplied	d Nitro	ogen					
Residual	Residual Post N Total					Net	Gross	
+Fall N	IN (lb/A)		Residual+	RSA	RSA RST Yield		Sucrose	Returns**
(lb/A)	T1	T2	Applied	(lb/A)	(lb/T)	(T/A)	(%)	(\$/A)
170	-	-	170	10084	346	30.0	16.84	1777
140	-	-	140	10172	344	29.6	17.25	1832
110	30	-	140	10099	342	29.6	17.10	1807
80	60	-	140	10459	344	30.4	17.21	1884
110	-	30	140	9305	335	27.8	16.74	1636
80	-	60	140	9137	335	27.3	16.78	1604

Yield and Sucrose Effects with 170 lb N per acre applied at different times

2011 University of Minnesota (Smith, Cymbaluk)

A	pplied	d Nitro	ogen_					
Residual	Post N		Post N Total				Net	Gross
+Fall N _	(lb/	/A)	Residual+	RSA	RST	Yield	Sucrose	Returns**
(lb/A)	T1	T2	Applied	(lb/A)	(lb/T)	(T/A)	(%)	(\$/A)
140	-	-	140	10172	344	29.6	17.25	1832
170	-	-	170	10084	346	30.0	16.84	1777
140	30	-	170	10233	337	30.4	16.85	1809
110	60	-	170	9945	344	28.9	17.17	1792
140	-	30	170	9877	334	29.6	16.67	1731
110	_	60	170	9474	334	28.4	16.72	1661

2011 University Minnesota (Smith, Cymbaluk)

Total lb. Nitrogen per Acre with side dressing

Applied Nitrogen (Ib/A)

2012 University of Minnesota (Smith)

Fall N	Pos T1	st N T2	Total (Res+ App)	RSA (lb/A)	Yield (T/A)	Net Sugar (%)	Gross (\$/A)
90	-	-	135	10297	27.7	18.6	1936
120	-	-	165	10352	29.0	17.8	1885
90	30	-	165	10079	28.4	17.8	1830
60	60	-	165	9882	27.4	18.0	1814
90	-	30	165	9664	27.2	17.9	1773
60	-	60	165	9519	26.6	18.0	1741

2012 University Minnesota (Smith)

Gross Revenue \$/A

- Fall applied N at 140 lb per acre maximized tonnage and gross return.
- With no Nitrogen loss, timing of Nitrogen did not improve tonnage or sugar.
- If there is a N deficiency, application of nitrogen at the 6 leaf stage was more beneficial than at row closure.
 - > At row closure, yield reduction has already occurred.
 - Late application of N will usually give you a reduction in sugar.
 - ➤ Lack of rain fall in August may have contributed to less nitrogen uptake from late application of Nitrogen.

ACSC- ADA, MN

- Grower had field prepared with 0# N applied
 - Soil Test= 15 units avail. (0-2')
 - Dry soil cond. led him to plant and fert. in-season
 - Waited for forecasted rain and made fert. app.
 - Timing #1 = 6-8lf beets, 100 units urea applied
 - Rained .7" 2 days after
 - Timing #2= row closure, 20 and 60 units urea applied
 - Rained .4" immediately after
 - Field harvested 10/15/12
 - Prepiled 10 loads 8/28/12 (175#)

ACSC- ADA, MN

August 28th prepile results (sugar, SLM)

Prepile Avg.	SLM %	Sugar %
175# N	1.98	16.42
Daily piling site	1.63	18.04
	+.35%	-1.62%

- Recommend Not to Prepile side dressed fields, when possible
- Stockpile results?

ACSC- ADA, MN

N Residual 0-2'	N Fall Applied	N Side Dressed (6-8 lf)	N Side Dressed (Row Closure)	Total N	SLM (%)	Sugar (%)	Yield (T/A)	RST (Lb/T)	RSA (Lb/A)	Rev/A (\$)
15	0	80	20	115	1.24	19.70	25.9	369	9562	1788
15	0	100	20	135	1.38	19.57	26.9	364	9786	1813
15	0	100	60	175	1.43	19.74	28.5	366	10437	1939

ACSC – Felton, MN

- Test plot done on tiled ground
- Planted April 20, Harvested Sept 24
- Fall soil test called for no added nitrogen
 - Re-tested in spring- same result
- 4 Reps- 0# check, 30# preplant, 30# side dress, 80# side dress
- Side dressed UAN June 6 at 8-12 leaf stage
 - 2 N rates- 30# and 80#

ACSC – Felton, MN

Residual N 0-2'		N Side Dressed		SLM %	Sugar %	Yield (T/A)	RST (Lb/T)	RSA (Lb/A)	Rev/A (\$)
87	0		87	1.15%	19.00%	26.3	357	9373	\$1,709.95
87	30		117	1.15%	19.28%	27.9	363	10119	\$1,869.25
87		30	117	1.23%	19.47%	25.8	365	9417	\$1,747.67
87		80	167	1.14%	19.20%	31.3	361	11311	\$2,082.91

ACSC- Stephen, Mn

Total Nitrogen Applied

ACSC- Stephen, Mn

Total Nitrogen Applied

Summary

ACSC Trials

- Successfully applied all nitrogen needs in season, to conserve seedbed moisture, with no effect on yield or quality
- Avg. increase of 1.8 T/A on side dressed trials
- Little to no effect on quality
- Increased Rev/A with side dress nitrogen
- Recommend not to prepile side dressed fields
- ACSC data contradicts University data
- Need more research
- Only 1yr of data

Summary University

<u>Sims</u>

- Side dressed N had little effect on yield
- Side dressed N has a less negative effect on quality than high preplant broadcast applications

Smith

- Fall applied N at 140 lbs./A. maximized yield and rev/a
- With no nitrogen loss, side dressing did not improve yield or sugar
- With nitrogen loss, nitrogen applications at 6 lf sugarbeets was more beneficial than after row closure

Factors to Consider

Side Dressing

- Fall and Early Spring weather
- Planting Date
- Plant Populations
- Soil Test N
 - Low levels 2-4', may utilize side dress N for late season growth

Conclusion

- Side dressing can improve nitrogen use efficiency
- Side dressing nitrogen in season, can reduce high rate spring preplant nitrogen applications
- Side dressing can be an effective practice to apply nitrogen in a stale seed bed planting situation
- Side dressing can remedy nitrogen loss due to environmental conditions

QUESTIONS?